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ABSTRACT 

The  viewpoint is taken  that  in  large  port>ions of the  atmospherc,  wind spcclds (V,,), divergence (D,?), and vor- 
ticity (r,?) obtained under the  gradient  wind  assnmptiorl  are  considerably  morc  accurate  representations of true 
conditions than  those  one  obtains  from  the  geostrophic  assumption.  Equations are derived for computing V,,, 
D,,, and r g l .  The  equation for the  vorticity of gradicnt’  winds has a considtlrahle resemblance to  “balance”  equa- 
tions of Charney [3] and Phillips [17]. Gradient \vinds and t,heir  space  derivatives  may  have  advantages  over  other 
formulations  due  to  their  relative  simplicity.  The  quantities V g r ,  D,,, and c g r  may be  compnted  yuitc easily from 
geopotential  data at grid  points  by  use of high-speed  computers.  Possible  applications of gradient winds in  practical 
and  theoretical  meteorology  arc  suggested. 

1. INTRODUCTION 

The geostrophic  wind  equation, an empirical  relation 
which equat,es  horizontal  pressure  and Coriolis forces, is a 
well-known cornerstone of both  theoretical  and  applied 
meteorology  in extratropical  latitudes. One might expect 
that a generalization of the geostrophic  equat,ion  to 
include a third  term of major  importance,  namely,  the 
centrifugal  force, would lead  to  more  accurate modeling 
of winds than  the simple  geostrophic  relation  provides. 
However, the  reader will immediately  realize that  the 
centrifugal  force V2K, where Vi s  wind speed ant1 K is the 
trajectory  curvature,  is  small in  regions of weak  winds, 
and  that in  regions of straight flow the  gradient wind 
automatically  degenerates  into the geostrophic. For 
example,  Neiburger e,t al. [13] compared  geostrophic and 
gradient  winds  wit,h  observed  winds on two 700-mb. 
charts  having a mean observed  speed ol  18 kt.  and found 
that  gradient winds were not sigrlificautly better  than 
geostrophic. In a study of st’rong  winds  (having an 
average  speed of 94 kt.),  Endlich  and  McLean [7] found 

that  in  c?~clonicall~~-curve~~  jet st’reams,  geostrophic winds 
overestimated wind spectls measured by  aircraft  by 28 kt. 
on the  average (18 percent of the geostrophic  speeds of the 
sample) while gradient winds differed only  minutely 
from measured  values. In other words, the centrifugal 
force was  18  percent of the pressure force. The  standard 
deviation of geostrophic  departures  (after  accounting  for 
observational  errors)  was  estimated as 22 kt. while the 
standard  deviation of gradient  departures was estimated 
as 5 . 5  kt.  From these data, one would conclude that in 
and  arour~d jet, streams,  and  probably also in relatively 
strong  currents at  other  altitudes, consideration of the 
centrifugal force accounts  for  the  major  part of the 
ageostropllic  components.  Remaining  ageostrophic com- 
ponents  are due to cross-contour flow, to  vertical  motions, 
and  to  friction.  However,  studies of constant-level 
balloon trajcctories  (Seiburger  and Angell [12], Angell 
[I])  indicate  that cross-contour  components  are  relatively 
large,  being  on  the  average  about  two-thirds of the magni- 
tude of the along-contour  (centrifugal)  components. 
Thus, the question o i  the  relative  magnitude of t’he  two 
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ageost'rophic conlporlerlts is presently  unresolved. Never- 
theless, Angel1 estimates  that  the  percentage  error in 
estimating winds geostrophically exceeds 29 percent badf 
of the  time, while t'he  error of t'he  gradient  assumpt'ion is 
xnsiderably less, exceeding 11 percent' half of the time. 
In practice, one can  include the centrifugal  components 
by use of gradient'  winds;  however, the cross-contour com- 
ponents,  though  important  in  initiating  disturbances and 
in subsynoptic  phenomena,  are  very difficult to estimate 
from conventional chta. 

The  hypothesis is therefore proposed that  gradient 
winds provide an estimat'e of actual winds which is 
sufficiently accurate  to  make t'hem  useful  in  describing 
the dynamics of synoptic-scale processes. In  support 
of t8his  hypothesis,  one mar recall that  the  propagation 
of cyclone waves  was  explained (see, for  example, the 
review by  Bjerknes [a]) on the basis of divergence of 
gradient winds in  advance of upper-level  troughs : r n d  
convergence behind.  Moreover,  Phillips [ l i ]  has shown 
that st'rictly  non-divergent  winds  int>roduce "met'eor- 
ological noise" and  are  not  suitable for  computing  initial 
data for numerical  prpdiction  bascd on integration of the  
primitive  equations.  Gradient  winds, which are  divergent 
yet  approximately  geostrophic,  might  provide  a  simple, 
relatively noiseless balance  condition  between  winds  and 
the  geopotential field. It will be shown later  that  the 
equat'ion  for gradient  vorticity (tg7) is quite  similar  to 
the well-known balance  equation  (Petterssen 1141, Charncy 
[3]) and  to  a  vorticity  equation based on a  divergent 
wind (Edelmann [6], Phillips [17]). 

One of the main difficult'ies to  be expected in  computing 
winds (and  especially  divergence  fields)  from  present 
upper-air data is t'hat  random  errors caused by observa- 
tional  inaccuracies will be contained  in the results. 
Therefore,  smoothing  of  computed  values may be a 
prerequisite to t'heir use. 

In order  to  determine  whether  advantages  accrue,  in 
practice, from the explicit  calculation of gradient winds 
and  their  divergence and  vorticity fields, in  the  future  it 
will be necessary to  carry out computa,t,ions  for com- 
parison with  observed  winds  and  with  divergence  and 
vorticity  calculat'ed by other  techniques. In  the present 
article, a simple method of  successive approximations is 
developed for  computing V g r ,  D,,, and lgr. The  nature 
of the  computational scheme is such  that it can be carried 
out  quite  simply  and  rapidly  by use of electronic  computers. 

2. COMPUTATION OF VELOCITY,  DIVERGENCE, 
AND  VORTICITY OF GRADIENT FLOW 

The basic  assumptions of gradient flow (e.g., Holmboe 
et al. [Ill) are  that  air parcels  maintain  constant speed 
(i.e., do  not cross the  contours on const'ant  pressure 
charts  t'oward  higher  or  lower  heights) and  move hori- 
zontally and  without frict.ion. The  equation which 
results  on introduction of these  assumptions  into  the 
horizontal equation of motion may be written as follows: 

Vgr2 (dO/ds) n= - f ( V g T -  V,) n (1) 

where T',, is t,he gradient  speed; 0 is the wind direct'ion 
t#aken as positive  in  the counter-clockwise direction; s 
is distance along the  pat'h; dO/ds is K the  curvature of 
the ptat>h; n=-V+/lV+[ is a unit'  vect'or  direct,ed to  the 
left of the  path, V operates at  constant  pressure,  and 
+=gz; f is the Coriolis parameter; and V g  is the geo- 
strophic wind  speed. The  term  on  the left'  side  represents 
t'he  centrifugal force which is proportional  to t,he differ- 

If we post-mult,iply  eyuat,ion (I)  vectorially by t'he 
ence 1,etween v,, and T~7,. 

vertical  unit, vtct,or k we obtain 

Alter a further simplificat,ion,  t'his  form of t'he gradient 
wind equat'ion mill  be used to compute VgT. The simplifi- 
cation involves  t'he use of Blaton's formula 

i.e., we neglec,t the  term  containing  t'lx  vertical advect'ion 
of e. If vertical  motion  is  present',  act'ual  three-dimen- 
sional  traject'ories  tend t'o be less cyclonic than  trajectories 
cst'imated on isobaric  charts (Danielsen [ 5 ] ) .  The differ- 
ence is greatest  in  fronts  or  other  phenomena where 
vert'ical  motions  reach  maximum  values. I t  is of lesser, 
and  perhaps negligible, import'ance  in  larger-scale mot'ions. 
As there is no  simple  method  for  est'imating t'he magnitude 
of the difference, it will be neglect'ed in  the  rema,inder of 
t'his paper. 

We will now define a parameter IC= (l,/JV+l)(de/ds.) or 
from  equation ( 5 )  

k= (l/lV+l) (ae/W+ (1/lv+l) ( W >  ( W W  (6) 

where k represents the trajec,t,ory  curvat'ure,  the  first  term 
on  the  right  measures  t'he  contour  curvature,  and  the 
second term  measures  the local change  in wind direction. 
For cyclonic  traject'ories k>O and  for anticyclonic, 
k<O. Since we have  assumed flow parallel to contours, 
bept may be evaluated as the local  change in  cont'our 
direction.  This  direction may be measured  counter- 
clockwise from  east so that 

B=tan" (v,/u,)= tanp1 (7 ) 

where the  subscripts J: and y denote  partial  derivatives 
eastward  and  northward. 

To  evduate  equation (6) we use bO/bs=cos O(bO/bx) 
+sin e(be/by) where e is given by equation (7) and, as 
a matter of convenience, substit'ute V ,  for V. Then 



k = ( ~ z 2 + ~ , 2 ) " 2 [ ( ~ y P ~ z z - 2 ~ ~ ~ z 1 / + ~ z 2 ~ y y ) + f ( ~ = ~ y l - ~ y ~ r t ) l .  

( 8 )  

Given the  distribution of 4 a t  grid  points on a  constant 
pressure chart,, one  can  easily compute  a finite difference 
approximation to the first tcrm in the bracket. A short- 
ened version of this  term has been used bJ- Phillips [I61 
in computing  contour  curvature.  The second term in the 
bracket  can he evaluated  as  the diflerence between geo- 
potential  gradients on charts  separated  in  time, or from 
the  space variations of geopotential  tendency. 

For  progressive,  wave-shaped contour  patterns,  the 
curvatures of traject'ories  and  contours are of the same 
sign (unless  t'he  waves arc  traveling  fastcr than t'he winds) ; 
however, the traject'ories  are less sharply  curved than t h e  
c0ntours.l In  other words, the  term (l/T/')(be/bt) is 
gcrleral1~- of opposite sign but smaller magnitude t l la t~ 
b8/bs. The  smoothing effect' of a finite-difference evalu:l- 
tion of de/ds t'erlds to reduce its  magnit'udc  toward the 
magnitude of t ' l~e  trajectory  curvature. Therelor.c, 011 

upper-level charts, especially where V is large,  it  may 
prove feasible to neglect the  term  containing (l/V)(be/bt). 

HtLving obtained a value of k at'  each  grid  point by usc 
of equation (S), we may write  equat'ion (4) in vector or 
sc:tlar form as 

V,,= (I -kVgr2)Vg or Vg,= (1 -kVgr2) I.',. (9) 

This  quadratic  equation ma)T be solved  for T~Tgr since k 
and V, are  known. In  the  past, t'he  solut'ion has ordi- 
ntwily  been obtained  graphically; e.g., Gust'ttfson [9]. If 
the equut'ion is solved by electronic  comput'er,  t'he square 
root  in the  quadratic  lormula is calculated by use ol an 
initial  guess  and successive  approximat'ions. It appears 
that a solution to equation (9) may be obtained  more 
directly  and  simply  by  t'he following process of Successive 
approximations. As a first  guess, we may  substitnt'e 
V,P for V,: on the  right  side of (9). Then if we replace 
t'he subscript on V,, by t'he number of t'he  approximation 
we obtain 

vl=(l-kv:)v, 
v,=(1--Fcv12)Vg 

(10) 

V,=(1--kV,-12)Vg. 

The convergence of V, t'o V,, is quite  rapid  as  shown 
in figure 1. Here we have  assumed  a  typical  jet  stream 
condit8ion  where  V,=125 kt.  and k = 2  X10-j kt." (cy- 
clonic curvature) so that V,,=100 kt.  The approxima- 
tions fall alternately  on  opposite sides of V,, and in this 
particular case, V, approaches V,, within 1 percent. For 

1 The  relationship3  hrtw-cen  stroamlines  and  trajectories  are  discussed by IIolmboe 
et. al. [l l]  and  flaltincr and Martin [lo], amon: others. 
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SUCCESSIVE  APPROXIMATIONS  TO  GRADIENT  WIND 

F r c r r ~ ~  I.-Graph showiI1g the convergcxrlce of successive  approxi- 
mations  to true gradient  wiud  speed ( V K r )  using the geostrophic 
s p c d  ( V , )  as the  initial  guess.  Solid  lines  join  approximation 
for  ryclonic curvktturc; dashed curve joins approximations for 
atlticyelonic cnrvatl trr .  Approxirrlations  computed  using  equa- 
tion ( 1 0 )  in  test .  

Vg=8:j.R and k =  "2x IOp5 (anticyclonic curvature),  the 
approsimat'ions  appronch V,, asymptotically. In this 
example, V, approached V,, (100 kt.) within 1 percent. 
It' c;m be shown t'hat for t'llese two  examples, convergence 
will occur if the  absolute  value  of  the  initial guess is less 
t8hm 500 kt'. In general,  the region of convergence is 
quite  broad. The geostrophic speed is a convenient 
initial guess which is in  t'he  neighborhood of the  gradient 
speed and t'herefore  results  in an acceptable  estimate of 
t,he gradient speed  aft'er  a  small  number of successive 
approxim' <i t' 1011s. 

For nnt'icyclonic flow and for :L given radius of curvature, 
T7,? increases  wit'h V, up  to a limit' of ZV,. Beyond this 
point,,  the  quarltit'y 4kV;<-l and  equation (9) has 
complex  solutions which have no physical reality.  Gra- 
dient mind balance does not exist in  these  "unstable 
ridges" and  the  approximat'ions of equation (10)  wilI not 
converge. Grid points a t  which this  equation  divergw 
may be marked  with a special  symbol to  indicate  the 
absence of gradient flow. Unstable ridges,  though rather 
uncommon,  are  synoptically  important since cut-off 
Lows somet'imes form downstream  (Bjerknes [a ] ) .  

We will assume t'hat  by  using  equation (10) we have 
obtained  a  satisfact'ory  estimate  of V,, a t  each  grid  point 
(with the exceptions  mentioned above). Now it  is 
convenient' to define a quantity 

B=-kVEr2 

so t'hat  equation (9) becomes 

V,,=(l+B)V, or B=(Vgr-Vg)/Vg. (11) 

B is a non-dimensional term which expresses the  departure 
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of the  gradient speed  from  tlle  geost,rophic  as a fraction 
of the geostrophic  speed. It may also be  thought of as 
the correction to be made t,o the geost'rophic  wind  in 
order  to obtain t'he gradient  wind.  For convenience, 
it will  be referred to as the "gradient  correction.'' In a 
roughly  sinusoidal pattern of cont,ours in which a jet  st,ream 
is  imbedded,  one  would  expect'  cent'ers of negat,ive B 
with  cent'ral  values of about 20 percent where the j e t  
crosses troughs,  and  similar  centers of posit'ive B where 
the  jet crosses ridges. 

The  "gradient divergence"  is defined as 

D,,=V .v,,=v. (l+B)V,=V, * VB+(l+B)V  *v,. (12) 

The divergence  therefore  depends on the geostrophic  wind 
and  the field of the  gradient correction B. To  obtain  a 
quantitative  estimate of the first  term on the  right side 
of equation (la),  we take a typical  value of geostrophic 
wind speed as 30 m. sec." To obtain  a  typical  value 
of VB,  we assume that B changes  from -0.20 in a trough 
to zero at   an inflection point  over a distance of 600 km. 
Then V,.VB equals lop5 sec." The second term on the 
right side of (12)  is  generally an order of magnitude 
smaller but  may be of importance  in  strong  meridional 
currents  in middle or low latitudes.  Therefore D,,- 
sec." which is of the order  expected  for  progressive  waves. 

The relative  vorticity of the  gradient  wind at  any 
point  is 

r,,=k.VXV,,=(l+B)r,Sk.VBXV, (1 3) 

where p p =  k . V xv, is the geostrophic  vorticity.  Since B is 
negative  in cyclonic flow and positive in  anticydonic,  the 
term (l+B) on the  right side of (13) t'ends t'o make rg, 
either less or more  t'han r,. Pettersserl [14] has shown 
that  the geostrophic  vorticity  overestimates  the  vorticitv 
of cyclones and  underestimates it in  anticyclones.  There- 
fore, B provides  a  correction in  the  proper  direction. 

Letting P=dj/dy and  using equation (3), r,=j-' 
(V2$+PuQ). on expansion, the  last  term  in (13) is 
vgBZ-ugBy. Using  these  relations, equation (13) becomes 

In  a machine  computation ol gradient  winds  and  their 
divergence and  vorticity,  one  might proceed as follows: 

1.  Tabulate  the  geopotentiul a t  grid  points  on a 
constant pressure chart. 

2. Using geopotential  dat'a a t  neighboring  grid  points 
as finite-difference approximations  to  partial  derivatives, 
compute u,, o,, and V, (equation  (3)),  and e (equation  (7)). 

3.  The  curvature  parameter k (equation (8)) rntty be 
computed in  two  steps.  Colnput'e the first  t'errn in the 
bracket  from the grid  point  data of' step 2. The second 
term  in  t'he  bracket may be  computed  as  the difference 
between past  and  present  values of & and +,, or AS t'he 
eastward and northward changes  in  geopotent'ial  t'endency. 

4. At each  grid point, rornput'e V,, from V,  and IC 
(equation (10)). 

5 .  C'ompute B at each  point from V,, and V,  (equation 
(11)). 

6.  Approximate V B  by finite differences and compute 
D,, a t  each point'  (equation  (12)). If desired,  vert'ical 
mot'ions m a y  be  obt8nined  from D,, by use of the  cont'inuity 
equat'ion  wit'h  appropriate  boundary  conditions. 

7. Compute r,, from equat,ion  (13)  or  (14). 
I t  should be noted  that  these  calculations do not' require 

solution of first  or second order  operators  over  the  grid. 
A  rough  estimate indicat'es that all of the  above  quantit'ies 
(except  vertical  motmion) can be c,alculat,ed by a  high-speed 
computer  such as the  IBM 704, for a 2000-point8 grid  in 
approximately 30 seconds. 

3. COMPARISON OF THE  VORTICITY OF GRADIENT 
WINDS  WITH  OTHER  BALANCE  RELATIONS 

Equat'ion (14) bears  a  strong  resemblance  in  itms  first 
t'hree  terms to  corresponding  terms in  the balance" 
equation  (Pett'erssen [14], C%arney [3]) writ't'erl as 

ii 

v~~-j~+pu+uz~+2~zw,+l~~=o (15s) 

or in terms of a st'reamfunction as 

,4 slightly  different equation has been obtained  by 
Ede1ln:mn  [6] and Phillips [17] : 

I t  should be noted  t'hat' the  vorticity specified by tthis 
equation  generally differs somewhat  from  t'hat given 
by equation (I  5). 

The similarities of equations  (14),  (15),  and (16) are 
evidently  due to the  fact  that' they are  all  obtained  from 
the horizontal equation of motion  by  approximating  tlle 
accrleration  in  one  way  or  another. The gradient wind 
approximates dV1dt  bJ+ the centrifugal force and is equiva- 
lent' to expressing the  geostrophic  departure V' as 

V'=V-V,-V,,-V,=f"(kXn)Vg,2 (de/&). (17) 

As mentioned  earlier,  equation (14) is simply  the  vorticity 
of the  gradient  wind.  Equation (15) is obtained  by  taking 
the divergence of t'he  horizontal  equation of motion  and 
thrn neglecting t'lle terms d ( ~  . V)/dt  and V W  . (bV/bp). 
The wind field specified by  this  equation is non-geostrophic 
and non-divergent.  Equation (16) gives the  vorticity of 
a  divergent,,  quasi-geostrophic wind which is obtained  by 
expressing the geostrophic depart'ure V' as f-' k X (dV/dt) 
and by approximating dV/clt geostrophically  (Philipps 
[15]) so that 

V'=S" k X  (bV,/bt+V, * VV,). (18) 
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As a consequence of his  demonst’ration that non-divergent 
initial wind fields introduce met’eorological  noise” into 
integrations of tlle  primitive  equations,  Phillips [17] has 
proposed obtaining  initial wind data by  solution of three 
simultaneous equations  (not  repeated  here) which give D, 
the horizontal  divergence. { is determined  from  equation 
(16), and D and { with  boundary  conditions  determine a 
wind  field which  is  relatively “noiseless.” 

In the  writer’s  opinion, the relat’ive  merit’s of expressing 
V’ by  equation (17) or  by  equation (18) are difficult to 
judge on theoretical  grounds. It follows that  equations 
(14) and (16) are  equally  plausible;  however,  gradient 
winds and  their divergence and  vorticity  appear much 
simpler to  compute  than  the  comparable quasi-geost’rophic, 
divergent’ quantities. I t   may be logical, therefore,  to 
conlpute lg7, V2#, and { by using equations (14), (15), 
and (16), respectively,  from  actual  dat’a for a  number of 
cases. The  t’hree  vorticit’y (or  corresponding  wind) fields 
might then be compared  and  tested  in  actual forecasts. 

11 

4. APPLICATIONS OF GRADIENT WINDS 

The following applications of gradient winds appear to 
warrant  further  investigation: 

1. Specifying winds on current  or  forecast  charts. 
Gradient’  winds  might  be  used  in  flight  forecasting  for 
aircraft’, in  determining  trajectories,  and  in  locating  jet 
streams  (Endlich  and  McLean [SI) and front’s. 

2. Use as a balance  condit’ion  between  winds and  the 
geopotential  field;  for  example, in computing  init’ial 
vorticity fields for use in forecasting  with  the  vorticity 
equation  or  in  comput’ing  initial  wind data for use in 
int’egrations of the primitive  equations. 

3. Determination of a first approximation  to  horizontal 
divergence fields and corresponding  vertical  motions. 
4. ,4s a  means of introducing wind data int’o  t’he  objec- 

tive  analysis of fields of geopotential  or  streamfunction  in 
place of the  current “geostrophic” use of observed winds 
(Cressman  [4]). A possible method of introducing ob- 
served  winds  according to  the  gradient  assumption would 
be to cornpute the  gradient correction (B)  that corresponds 
to  the  geopotential field used as  the  initial guess.  Ob- 
served  winds  divided by  (l+B) would give  geostrophic 
winds for  use in  the  objective  analysis  procedure. 

As mentioned  in the  Introduction,  the  application of 
gradient winds to  the problems  mentioned  above is based 
on the empirically supported  hypothesis that t’hey  provide 
a considerably  more accurate  approximation to t’rue 
condit’ions than  the more  restrictive  geostrophic, a,ssump- 
tion  provides;  however,  this  hypot’hesis  must’ be tested 
further  with  observational data before  a final judgment 
of its  validity  can be made. 
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